
Turbulent flow in a stably stratified atmosphere 

By A. A.  TOWNSEND 
Ernmanuel College, Cambridge 

(Received 2 July 1957) 

SUMMARY 
Fluctuations of velocity and temperature which occur in 

a turbulent flow in a stably-stratified atmosphere far from 
restraining boundaries are discussed using the equations for 
the turbulent intensity and for the mean square temperature 
fluctuation. From these, an equation is derived for the flux 
Richardson number in terms of the ordinary Richardson number 
and some non-dimensional ratios connected with the turbulent 
motion. It is shown that the interaction between the temperatufe 
and velocity fields imposes on the flux Richardson number an 
upper limit of 0.5, and on the ordinary Richardson number a 
limit of about 0.08. If these values are exceeded, no equilibrium 
value of the turbulent intensity can exist and a collapse of the 
turbulent motion would occur. Although the analysis applies 
strictly only to a homogeneous non-developing flow, it should 
have approximate validity for effectively homogeneous, developing 
flows, and the predictions are compared with some recent 
observations of these flows. 

1. INTRODUCTION 
The study of turbulent flow in a stably-stratified fluid may be helped 

by the recognition of some different types of irregular flow which may 
occur. If the direct influence of the buoyancy forces on the motion is 
small, the motion will resemble ' ordinary ' turbulence and will be 
characterized by high rates of energy dissipation, and of momentum and 
mass transport. If the buoyancy forces are dominant, the motion may be 
an irregular collection of gravity waves with low rates of energy dissipation 
and transport. In  flows unrestrained by boundaries, both types of motion 
are found, characteristically turbulent motion near the origin of the flow 
and wave-like motion far downstream. There is here a gradual transition 
from the region of turbulent flow to the region of wave flow, which makes 
difficult the definition of the limits of either flow ; nevertheless, the two 
flows are so distinct that no common description is likely to be valid. 

In  this paper, the characteristically turbulent flow in a stably-stratified 
fluid far from restraining boundaries is discussed, using ideas and 
generalizations taken over from our knowledge of turbulent flow of constant 
density, with the purpose of obtaining a criterion for the continued 
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existence of fully turbulent flow. Naturally, the results can only be valid 
while the flow is fully turbulent, and the accuracy of the analysis depends 
on the occurrence of a breakdown in the mechanism of ‘ordinary’ 
turbulent flow before buoyancy forces become dominant. 

The methods used are by no means new, and might be described as 
mutton (mixing-length theory), dressed as lamb by recasting it in terms 
of similarity hypotheses. The approach is somewhat similar to that 
used by Ellison (1957) who considered a boundary layer transmitting 
constant shear stress and constant heat flux. This is an example of the 
class of turbulent flows which have complete homogeneity in the direction 
of flow allied to essential inhomogeneity in the direction of shear. All 
such flows are restrained by the fluid boundaries, while the unrestrained 
flows considered in this paper are substantially homogeneous in the 
direction of shear and inhomogeneous in the direction of flow. 

Although this paper is concerned primarily with flows in which radiative 
exchange of heat is negligible, the possibility of radiative transfer has been 
kept in mind and its effects will be considered in more detail in a following 
paper. 

2. CONDITIONS FOR SIMILARITY OF THE TURBULENT MOTION 

The attempt to find the criterion which determines whether turbulent 
flow does or does not occur in a particular flow system is a part of the 
general problem of establishing the conditions under which flows with 
geometrically similar boundary conditions are dynamically similar, the 
independent non-dimensional parameters whose equality permits dynamical 
similarity losing one degree of freedom when they specify a marginally 
stable flow. With the earth’s atmosphere in mind, we consider only flows of 
a nearly perfect gas, moving with velocity variations small compared with 
the local speed of sound, with temperature variations small comparedwiththe 
absolute temperature, and with a length scale small compared with 
the scale height of the atmosphere. If effects of the earth‘s rotation 
are negligible, it may be shown (Batchelor 1953) that dynamical similarity 
of flows with geometrically similar boundary conditions, defined quanti- 
tatively by the three scales uo, I,, O,, referring to velocity variation, length, 
and potential temperature respectively, depends on equality of the three 
parameters uo Zo/y (Reynolds number), gOo Zo/( To u:) (Richardson number), 
V / K  (Prandtl number), and equality or irrelevance of parameters depending 
on the radiative characteristics of the gas. Here v is the kinematic viscosity, 
K the thermometric conductivity, and T, the mean absolute temperature. 
For flows of essentially the same gas the Prandtl number does not vary, 
and experience of shear flows of high Reynolds numbers shows that 
viscosity has no effect on the large-scale components of the motion which 
contain nearly all the energy. It follows that similarity depends only on 
the scale Richardson number and on the radiation parameters. 

No further simplification can be made by dimensional analysis alone 
without considering the dynamics of the flow. To the approximation 
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implied by the restrictions set out above, the Navier-Stokes equations of 

and the continuitv eauation is 

where Ui and ui are the i-components of the mean fluid velocity and its 
fluctuation, 6 is the temperature fluctuation about the mean T,  P and p 
are the mean, and the fluctuation about the mean, of the pressure difference 
from the 'hydrostatic' pressure Po defined by aPo/axi = -pgi, -g i  is 
the acceleration vector of the gravitational field, p is the mean density. 

T o  this approximation, the direct effects of density variations on the 
velocity field are completely represented by the bouyancy term gi BIT, 
although the distribution of the buoyancy forces will depend on the 
interaction of the turbulent motion and the heat sources of the flow. 
The action of these buoyancy forces may be described in several ways but 
a fundamental effect is the addition or subtraction of energy from the 
turbulent motion. The equation for the turbulent kinetic energy per unit 
mass is 

q 1 - z  
2 q  - &&+wiV2ui ,  (2.3) 

where q2 = uiui and repeated suffices indicate summation over the three 
possible values of the repeated suffix. On the left-hand side of this equation, 
the first term is zero if the flow is statistically steady and the third and fourth 
terms represent transport of mechanical energy from one part of the flow 
to another, repectively transport by diffusive movements and through 
advection by the mean flow. Diffusive transport is usually effective only 
in the direction at right angles to the mean flow and can be eliminated 
from the equation by integrating over a whole section of the flow. Energy 
transport by advection cannot be eliminated in this way and it is of 
importance in all developing flows, e.g. boundary layers, jets and mixing 
layers, but its effects cannot usefully be considered without specifying 
the flow and it will be neglected in the following discussion. For this 
reason the results obtained apply strictly only to non-developing flows. 

Three terms now remain in equation (2.3), they represent energy 
production by transfer from the mean flow and energy loss through work 
done against buoyancy forces and through viscous dissipation. T o  the 
extent that energy sources control its nature, the flow depends on the 
relative magnitudes of these three terms, or the ratio of the total loss of 
energy by buoyancy forces, 

- j $ G d A ,  

a - -aui 
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to the total production by transfer from the mean flow, 
- aui 
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where the integrals extend over a whole section of the flow. This ratio, 

is the flux Richardson number for the whole section of the flow. 
ordinary flux form of the Richardson number, 

The 

is the relevant Local parameter only if turbulent transport of energy can be 
neglected. This analysis has been set out here to show that describes 
the relative effects of inertial and buoyancy forces on the turbulent motion, 
whether or not radiative transfer is an important element in the problem. 

Since radiative transfer plays no direct part in the dynamics of the 
turbulent motion or in the turbulent energy balance, it is a plausible 
assumption that the flux Richardson number will describe the motion with 
or without radiative transfer of heat. It does not follow that the condition 
for the maintenance of turbulent motion must be expressible as a single 
critical value of the flux Richardson number. Obviously the flux Richardson 
number cannot exceed one (turbulent dissipation of energy cannot change 
sign) but laboratory observations of flows unaffected by radiative transfer 
indicate a critical value of the flux Richardson number substantially less 
than one. The critical condition appears to arise from a failure to achieve 
equilibrium in the interactions between the temperature field and the 
turbulent motion, which may occur in the following way. In a flow with 
given gradients of mean temperature and velocity, production of turbulent 
energy is proportional to the Reynolds stress and approximately proportional 
to the turbulent intensity. Loss of energy through buoyancy forces is 
proportional to the vertical heat flux or, in the absence of radiation, to the 
square-root of the turbulent intensity. Turbulent dissipation of energy 
is proportional to the $-power of the intensity. Clearly the ratio of the 
total energy loss to the energy production, considered as a function of the 
turbulent intensity, has a minimum value, and if this is greater than one no 
equilibrium intensity exists and the turbulence must decay. Introduction 
of radiative heat transfer into the system alters the dependence of 
turbulent heat transport on turbulent intensity and will lead to a change in 
the critical condition. Although the motion itself may be still determined 
by the flux Richardson number, the range of possible Richardson numbers 
will depend on the intensity of the radiative transfer. The next sections 
are concerned with the quantitative expression of these notions. 

3. THE TURBULENT HEAT TRANSFER 

To the approximation being used, the equation for the 
a fluid element is 

temperature of 

(3.1) 
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where W is the net rate of heat gain by radiative processes. rf this equation 
is multiplied by the temperature fluctuation and the mean value taken, an 
equation for the intensity of the temperature fluctuations is obtained, 

- 
In  this equation, the radiation term :%/(pc,) has been written as -Be2, 
where /3 may be regarded as the logarithmic rate of cooling of a fluid element 
by radiation alone. This radiation term is in general a function of the whole 
temperature field and its exact value will be considered in a second paper. 

From equation (3 .2) ,  an estimate of the heat transport by convective 
movements can be obtained. From this point on, it is convenient to consider 
a stationary flow with vertical gradients of the horizontal mean velocity and 
of temperature. In addition, the transport terms will be omitted from the 
equations for the turbulent energy and for the intensity of the temperature 
fluctuations, which means that advection is neglected and that the quantities 
in the equations are suitably defined mean values for the whole flow. Using 
the ordinary notation with the Oz_ axis vertical and mean velocities along 
the Ox axis, equation (3.2) for becomes 

- - _  
where the conduction term K8V20 has been replaced by - ~e2(w2)1'2/Lo. 
'rhis substitution is to some extent formal, but it expresses also the 
experimentally established result that the large-scale properties of turbulent 
flows are independent of the magnitudes of the viscosity and conductivity 
of the fluid. In  constant density flows, the length L,, is nearly equal to the 
integral scale of the turbulent motion. From this equation, 

- where 
k,= j ~ e I / [ ~ ~ e ~ ] * ' ~ ,  

and the heat transfer by turbulent convection is 

_ _  
where k,, = uw/w2. The flux Richardson number, defined by equation (2.5), 
is 

An expression for the flux Richardson number may be obtained in a 
form involving only gradients of mean values and some non-dimensional 
ratios. This is done by using the equation for the kinetic energy of the 
velocity fluctuations which is, omitting energy transport terms in the same 
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way as transport terms were omitted in equation (3.3), 

- au - (eU9312 
-uw- = - - aZ L ,  (3.7) 

where L ,  is the dissipation length scale and is nearly equal to the integral 
scale in constant density flows. Combining this equation with ( 3 . 5 )  leads 
to a quadratic equation for the turbulent heat transport, whose solution 
may be written in the non-dimensional form 

where 

and 

(3.9) 

The number H is a measure of the ratio of the logarithmic rate of radiative 
cooling of a fluid element to the mean rate of shear. In the absence of 
radiative effects, it equals one. 

4. CONDITIONS FOR THE MAINTENANCE OF TURBULENT MOTION 

In the previous section, an equation was obtained relating the turbulent 
heat transport to the gradients of mean velocity and potential temperature, 
to the radiative properties of the fluid, and to some non-dimensional ratios 
describing the turbulent motion. The validity of conclusions drawn from 
this equation depends only on further assumptions about the variation of 
the non-dimensional ratios with stability, since it is derived directly from 
the equations of motion and of heat. Neither theory nor experiment gives 
firm guidance on this point, and it will be assumed that the ratios Lo/L,, 
k, and A,, are nearly independent of stability. The first of these ratios, 
Lo/L,, is simply the ratio of the logarithmic dissipation rates for temperature 
and velocity fluctuations. The large-scale fluctuations of temperature and 
vertical velocity are closely correlated and it seems unlikely that the rates 
of turbulent transfer down the scale of eddy sizes (which determine the 
magnitudes of the conductive and viscous dissipations) could be very 
dissimilar (Ellison (1957) makes an equivalent assumption for a constant- 
stress boundary layer). A more debatable assumption is that the shear 
coefficient k, and the temperature-velocity correlation k, are nearly indepen- 
dent of stability, for there are circumstances in which it is certainly not true. 
In the last stages of decay of a turbulent mixing-layer between two streams 
of different temperature, most of the motion is in the form of gravity waves 
at the interface and permanent mixing on the molecular scale is a rarity. 
Both these coefficients then approach zero although at different rates. 
Again, in a thick boundary layer of constant stress and constant downward 
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heat transport, buoyancy has a negligible influence near the ground and an 
overwhelming influence at great heights. Here, it is not possible to think 
of ku and kB except as functions of height. The previous analysis has 
assumed stationary, non-developing flow and the use of typical or mean 
values of the velocity and temperature gradients implies that the motion 
in all parts of the flow is essentially similar, so both these sets of conditions 
are excluded. If the flow is everywhere characteristically turbulent, it is 
probable that the correlation factors are always large and near their values 
in constant density flows. 

Returning now to the consideration of equation (3.Q we see that real 
values of the turbulent heat flux and the flux Richardson number are only 
possible if 

1 kzL,  
R i < - - -  12 kz Lo 

assuming, as we do from now, negligible effects of radiative transfer. 
Accepting the substantial constancy of k,, k ,  and L,/L,, this sets the limit 
to possible values of the flux Richardson number, 

This limit to the possibility of turbulent motion arises from an impossibility 
of finding any real turbulent intensity to satisfy both the equation for the 
turbulent energy and the equation for the intensity of the temperature 
fluctuations, and it is additional to the limit set by the energy equation 
alone, 

Rf < +- ( 4 4  

Rf < 1. (4.3) 
An interesting consequence of a limiting value for the flux Richardson 

number of one-half is that the turbulent intensity is finite in the critical 
flow. This can be seen by writing the energy equation (3.7) in the form 

At the limit.Rf =. i, the turbulent intensity will be about one-quarter of 
the constant density value, and a sudden collapse of the turbulent motion 
occurs as the limit is passed. 

5. COMPARISON WITH EXPERIMENT 

For a proper test of the validity of the analysis, it would be desirable 
to have experimental confirmation that the ratios ku, KO, and LJL,, are 
nearly independent of stability, but practically no information is available. 
A few measurements of turbulent flows with stable density gradients do 
exist and these may be examined. for conformity with the proposed criteria 
for turbulent motion ((4.1) and (4.2)), but nearly all these are of developing 
flows and in these stability is not a simple concept. In an unconstrained, 
developing flow, the Richardson number initially increases with distance 
from the origin of the flqw but a comparatively rapid decay of the turbulent 
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motion sets in downstream of the point where the Richardson number 
attains a critical value, this decay corresponding with the sudden collapse 
of the turbulent motion in a non-developing flow. As the decay is not 
instantaneous, the Richardson number may increase beyond the critical 
value. This makes the experimental determination of the critical value 
difficult and measurements of the kind to be discussed can do little more 
than indicate that the critical Richardson number may be near 0.1. 

DISTANCE FROM HEATED SURFACE 

Figure 1. Boundary layer on the underside d , a  heated surface (C. I. H. Nichol). 
Free stream velocity U ,  = 1.50 cm sec-l, free stream temperature To = 288" K, 
surface temperature T ,  = 388" K, x = 151 cm, (gx/Ui)log(T,/T,) = 1.94. 

Probably the most accurate and comprehensive measurements in this 
field are those of C. I. H. Nichol in the turbulent boundary layer on the 
underside of a heated surface. In these experiments, an artificially-thickened 
boundary layer was allowed to develop naturally for a distance of 127 cm, 
beyond which point the wall temperature was maintained at approximately 
100°C above the temperature of the free stream. At an air-speed of 
150 cm sec-l, a nearly complete collapse of the turbulent motion was 
observed between 151 cm and 202 cm, the flow then having very low 
values of turbulent intensity and wall stress and a highly inflected form to 
the mean velocity profile (figures 1 and 2). This last effect is a consequence 
of the virtual disappearance of Reynolds shear stresses which earlier had 
kept the air next the wall moving. With their removal, this air slows down 
and the streamlines expand, displacing the outer flow. The beginnings 
of this process are clearly visible at x = 151 cm (figure l), although the 
heat from the wall has not yet spread to the outer parts of the layer, and also 
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in the measurements at an air-speed of 190cm~ec--~ (figure 3). As the 
individual measurements of velocity and temperature have random errors 
reflecting the considerable experimental difficulties, the computation of 
local Richardson numbers is not easy, as is shown by figure 4 in which are 
plotted local Richardson numbers computed by taking finite differences 
between neighbouring experimental points. The scatter is very large and 
only the most docile reader would agree from this that the mean values 
in the outer part of the layers are all less than 0.1. More representative 
numbers have been obtained by using the mean gradients over the outer 
parts of the layers, between 0.5 cm and 2.5 cm from the wall. These 
numbers are given in table 1 and may be more acceptable evidence that the 
Richardson number just before collapse is less than 0.1". 

DISTANCE FROM HEATED SURFACE 

Figure 2. Boundary layer on the underside of a heated surface (C. I. H. Nichol). 
; Free stream velocity U ,  = 150 cm sec-', free stream temperature To 7 288" K, 
surface temperature T ,  = 388" K, x = 202 cm, (gx/U$og(T,/T,,) = 2-60. 

In the second series of experiments, a liquid jet was injected horizontally 
along the interface between a denser and less dense solution of salt in water. 
From a cink record estimates could be made of the velocity and width of 
the jet. It was found that entrainment of fluid by the jet almost ceased 
when the Richardson number (which increases with distance from the 
nozzle) exceeded 0.3. Beyond this point, the velocity and cross-section 
of the jet remained nearly constant, indicating very little entrainment and 

* It should be pointed out that this flow is essentially different from the constant- 
stress layer considered by Ellison (1957). The flow in this developing layer was not 
essentially different from that in one-half of the mixing layer between two streams. 
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DISTANCE FROM HEATED SURFACE 

Figure 3. Boundary layer on the underside of a heated surface (C. I. H. Nichol). 
Free stream velocity Uo = 190 cm sec-1, free stream temperature To = 289" K,  
surface temperature T, = 385" K, x = 202 cm, (gx/U;)log(T,/T,) = 1.57. 

DISTANCE FROM HEATED SURFACE 

Figure 4. Boundary layer on the underside of a heated surface : local Richardson 
numbers. 

(a) Uo = 150 cm sec-', x = 151 cm, 
(b)  Uo = lSOcmsec-l, x = 202cm, 
(c) Uo = 190cmsec-l, x = 202cm. 



Turbulent Pow in a stably stratiJied atmosphere 371 

presumably very little turbulent motion. The first signs of a diminution 
in rate of entrainment appeared at a Richardson number of about 0.05, 
and the critical number, in the sense used in the theory, is believed to lie 
between these limits (see figure 5). 

Conditions 

Uo = 190 cm sec-' 
x = 202 ~ m ,  T,- To = 96" C.  

U ,  = 150 cm sec-', 
x = 151 cm, T,-To = 100" C. - 

Uo = 150 cm sec-l, 
x = 202 cm, T,- To = 100" C. 

Ri Remarks 

0.070 Collapse just beginning. 

Spread of heat from the wall not 
yet complete. 

o.022 Collapse nearly complete : note 
low value of Ri. 

a / 
/ - 

P L A N  VIEW % 
ELEVATION s 

d - 
0.4 c 

X 

Figure 5. Spreading of a jet injected along the interface between saline solution of 
densities 1.032 and 1 -125 gm ax3. (a) Variation of widths with distance from 
origin. The straight dashed line is the mean of observations of normal, con- 
stant-density jets. (b)  Mean velocities of advance of marked fluid put into 
the jet. The dashed line is the mean of observations on a normal jet. 
(c) Instantaneous outlines of the jet, traced from enlargements of cin6 records. 
The scale is the same as that of the horizontal scale of the other diagrams. 
(d) Mean Richardson numbers, computed as Ri = 0.064g[(p1- p2)/p](D/U&), 
where D is the observed width and U, is the mean velocity of advance of dye. 
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The difficulty in all experiments with developing flows is that a failure 
of the regulating mechanism will cause the turbulence to decay but, while 
it decays, spreading of the flow and entrainment of ambient fluid continues. 
For this reason there is a lower critical number at which decay begins and 
an upper critical number attained when decay is complete. The lower 
number marks the failure of the normal regulating mechanism of the 
developing flow and should correspond with the one considered in the theory. 

This conclusion that the critical Richardson number is about 0.08 
appears to ignore the frequently quoted series of measurements of the flow 
of fresh-water of salt in the Kattegat, analysed by Taylor (193 1) and others. 
In these measurements, Richardson numbers as high as one hundred were 
found although the shear stresses and transport of salinity were much larger 
than could be accounted for by viscosity and molecular diffusion. The 
observed values of the flux Richardson number were around 0.3. Some 
observations of a similar flow carried out by Dr J. S. Turner in the Cavendish 
Laboratory suggest that this apparent anomaly may be due to the non- 
existence of a critical Richardson number in the ordinary sense for a 
developing flow. In these experiments, fresh water was caused to flow 
over salt water which was coloured for easy identification. Near the 
beginning of the mixing zone, mixing is intense and caused by ordinary 
turbulent movements but, further downstream, the flow settles down to 
nearly laminar flow with a sharp interface between the fresh and the salt 
water. This interface is continuously distorted by irregular gravity waves 
which occasionally break, projecting coloured sait water upwards and, 
presumably, fresh water downwards. Most of these jets seem to fall back, 
losing only a small part of their volume by mixture but clearly transferring 
a considerable part of their momentum by the formation of ‘inviscid’ 
wakes of the vortex sheet type. Transfer of salinity is primarily due to 
molecular diffusion from the jets but is enhanced by the motion of the jets 
through the alien fluid. These qualitative considerations show that in this 
part of the flow ‘ turbulent ’ transport of salinity and momentum will each 
be considerably greater than the molecular rates, but that proportionately 
momentum transfer is very much more intense than salinity transport. 
It is probable that the Kattegat measurements were carried out under 
similar conditions and that the measured Richardson numbers do not 
refer to turbulent motion but to this random wave motion of the interface. 

I am indebted to Mr C. I. H. Nichol for permission to abstract from his 
unpublished work the measurements that are represented in figures 1-4. 
I have benefited from observation and discussion of the experiments of 
Dr J. S. Turner on the flow of fresh water over salt water. 
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